
Accelerating Listwise Reranking:
Reproducing and Enhancing FIRST

Zijian Chen
s42chen@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Ronak Pradeep
rpradeep@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Jimmy Lin
jimmylin@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Abstract
Large language models (LLMs) have emerged as powerful listwise
rerankers but remain prohibitively slow for many real-world appli-
cations. What’s more, training on the language modeling (LM) ob-
jective is not intrinsically aligned with reranking tasks. To address
these challenges, FIRST, a novel approach for listwise reranking,
integrates a learning-to-rank objective and leverages only the logits
of the first generated token for reranking, significantly reducing
computational overhead while preserving effectiveness. We sys-
tematically evaluate the capabilities and limitations of FIRST. By
extending its evaluation to TREC Deep Learning collections (DL19–
23), we show that FIRST achieves robust out-of-domain effective-
ness. Through training FIRST on a variety of backbone models, we
demonstrate its generalizability across differentmodel architectures,
and achieve effectiveness surpassing the original implementation.
Further analysis of the interaction between FIRST and various first-
stage retrievers reveals diminishing returns akin to traditional LLM
rerankers. A comprehensive latency study confirms that FIRST con-
sistently delivers a 40% efficiency gain over traditional rerankers
without sacrificing effectiveness. Notably, while LM training implic-
itly improves zero-shot single-token reranking, our experiments
also highlight potential conflicts between LM pre-training and sub-
sequent fine-tuning on the FIRST objective. These findings pave
the way for more efficient and effective listwise reranking in future
applications. Our code is available at: https://rankllm.ai.

CCS Concepts
• Information systems → Language models; Retrieval effi-
ciency; Retrieval effectiveness.

Keywords
Information Retrieval; Listwise Reranking; Large Language Models

ACM Reference Format:
Zijian Chen, Ronak Pradeep, and Jimmy Lin. 2025. Accelerating Listwise
Reranking: Reproducing and Enhancing FIRST. In Proceedings of the 48th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’25), July 13–18, 2025, Padua, Italy. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3726302.3730287

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3730287

1 Introduction
Large language models (LLMs) have emerged as powerful tools for
information retrieval, including the task of document reranking
[26]. Recent studies have demonstrated that LLMs, used as zero-shot
listwise rerankers, can surpass traditional supervised approaches
without requiring extensive relevance judgments [10, 13, 21].

However, associated with LLM rerankers is their high inference
latency, presenting challenges for practical deployment. Traditional
listwise reranking approaches frame the reranking problem as a
generation task, requiring LLMs to produce complete permuta-
tions of the document identifiers as the output ranking, trained
using language modeling loss against the correct permutation. The
combination of auto-regressive generation in transformers and
the substantial size of LLMs leads to concerning latency issues in
practical applications [26].

To address these efficiency challenges, Zhuang et al. [28] pro-
posed examining the relative magnitudes of first-token logits for
reranking, eliminating the need to generate entire identifier permu-
tations. Following up, recent work by Reddy et al. [19] introduced
FIRST (Faster Improved Listwise Reranking with Single Token
Decoding), which not only leverages single-token reranking, but
also combines it with a new training objective. The authors claimed
that the language modeling objective is fundamentally suboptimal
for reranking as it uniformly penalizes incorrect ranking across all
positions, failing to emphasize the importance of correctly ranking
the most relevant documents. By incorporating a learning-to-rank
loss alongside their single-token strategy, FIRST promised more
efficient reranking without compromising effectiveness.

While results from FIRST were promising, several questions
remain about its broader applicability and practical impact. In this
work, we present a comprehensive reproduction and analysis of
the method, guided by the following research questions:

RQ1 How does FIRST generalize to different LLM backbones be-
yond the original Zephyr𝛽 implementation?

RQ2 How does FIRST generalize to other out-of-domain datasets?

RQ3 Towhat extent can LLMs trained solely on languagemodeling
perform FIRST-style reranking in a zero-shot setting?

RQ4 How does FIRST perform when paired with different first-
stage retrievers?

RQ5 What are the concrete effectiveness–efficiency tradeoffs be-
tween FIRST and traditional full-generation?

RQ6 What are the effectiveness–efficiency tradeoffs between dif-
ferent window and step sizes when using FIRST?

https://orcid.org/0009-0005-6895-6329
https://orcid.org/0000-0001-6296-601X
https://orcid.org/0000-0002-0661-7189
https://rankllm.ai
https://doi.org/10.1145/3726302.3730287
https://doi.org/10.1145/3726302.3730287


SIGIR ’25, July 13–18, 2025, Padua, Italy Zijian Chen, Ronak Pradeep, and Jimmy Lin

Through investigating these questions, we validated the robustness
of FIRST across a diverse range of backbone models and datasets,
achieving 40% latency improvements while maintaining effective-
ness. Moreover, our investigation yielded several insights about the
relationship between language modeling and the effectiveness of
FIRST: while language modeling training implicitly improves zero-
shot single-token reranking capabilities, we discovered that lan-
guage modeling pre-training may paradoxically hinder subsequent
FIRST fine-tuning. These findings provided important implications
for model training strategies and contributed to our understanding
of efficient reranking approaches.

2 Background and Related Work
Multi-Stage Ranking. Given a corpus of documents denoted C =

{𝑑1, 𝑑2, · · · , 𝑑𝑛} and a query 𝑞, retrieving refers to the task of find-
ing an ordered list R of 𝑘 most relevant documents from C, in
descending relevance with respect to 𝑞, where 𝑘 << |C|. Reranking
refers to the downstream task that reorders R, if necessary, to a
more accurate ranking. This retrieve–rerank procedure common
in modern systems is referred to as multi-stage ranking, where the
retrieve step often uses a more computationally efficient approach,
followed by a more accurate but expensive rerank step [14]. The re-
trieving system is referred to as a first-stage retriever in this setting,
while the reranking system is referred to as a reranker.

Reranking with Large Language Models. Recent work has demon-
strated that LLMs can serve as effective rerankers [16, 18]. Such
approaches can be categorized into pointwise, pairwise, or listwise.

Earlier work predominantly utilized the pointwise approach,
where the LLM assesses each query–document pair independently,
computing a likelihood or binary relevance judgment in isolation
[27] of the other documents. On the other hand, pairwise approaches
leverage the LLM to compare the relevance of two documents at a
time, given the same query [18].

More recently, RankGPT [21] experimented with a listwise ap-
proach, where the LLM is prompted with a query and a list of
documents, generating a complete permutation of the documents
based on their relevance to the query. RankZephyr by Pradeep et al.
[16] continued this theme by instruction-tuning Zephyr𝛽 [24] to
perform such listwise document reranking. Concurrently, Rank-
without-GPT [25] explored instruction tuning leveraging non-GPT
teacher models. Newer work [22] has also explored more efficient
listwise reranking through smaller encoder–decoder models.

In this study, we focus on utilizing LLMs as listwise rerankers.

Listwise Reranking with FIRST. Although listwise reranking ap-
proaches have demonstrated strong effectiveness, they are compu-
tationally intensive, as they typically rely on sequence generation
to produce an entire permutation of document identifiers. FIRST
by Reddy et al. [19] addresses these inefficiencies by utilizing only
the logits from the first token in the output sequence to determine
the rank order of candidate documents, rather than generating a
complete ranked sequence.

Further, FIRST incorporates a learning-to-rank objective during
training, prioritizing ranking accuracy for top candidates over less
relevant ones, rather than focusing solely on the language modeling

objective. This modification by Reddy et al. promised to give more
effective supervision during training.

Together, FIRST offers a more efficient reranking model that
achieves comparable or superior ranking quality with substantially
reduced computational demands. In this work, we refer to LLM
rerankers that employ full-sequence generation like RankZephyr
[16] as “traditional LLM rerankers”, while we designate models
utilizing the single-token approach as “FIRST rerankers”.

3 Methods
We begin by summarizing the methodology introduced by Reddy
et al. [19], while also formalizing the problem and notation.

Listwise Reranking Using Sliding Windows. Recall the reranking
problem: given a candidate document list R = {𝑑1, 𝑑2, . . . , 𝑑𝑛} for
a query 𝑞, reorder R based on the document relevance to 𝑞. Due
to context window constraints in LLMs, this reordering typically
cannot be accomplished in a single step. Following Sun et al. [21],
we employ a sliding window approach with window size𝑚 and step
size 𝑠 . The window processes𝑚 documents at a time, moving from
the end of the list toward the front with a stride of 𝑠 documents. At
each step, the LLM is prompted to reorder the documents within
the current window according to their relevance to 𝑞.

FIRST Objective. Conventional listwise reranking approaches
require LLMs to generate a complete permutation of the candidate
document identifiers and are trained using a language modeling
objective against the correct permutation. In contrast, FIRST derives
the rank ordering solely from the relative magnitude of the output
logits of the first generated identifier token, eliminating the need for
full-sequence generation. To formally state the objective of FIRST:

• 𝑡𝑖 denotes the identifier token for document 𝑑𝑖
• 𝑝𝑖 represents the logits for generating 𝑡𝑖 as the first (most
relevant) identifier token

• 𝑟𝑖 ∈ {1, . . . ,𝑚} indicates the true rank of document𝑑𝑖 among
𝑚 candidates

FIRST incorporates a weighted pairwise learning-to-rank loss de-
fined as:

L𝑅𝑎𝑛𝑘 =
∑︁
𝑟𝑖<𝑟 𝑗

1
𝑖 + 𝑗

log(1 + exp(𝑝𝑖 − 𝑝 𝑗 ))

where the weight term 1
𝑖+𝑗 prioritizes accurate ranking of higher-

ranked documents, aiming to address the issue of uniformly penal-
izing incorrect ranking across all positions in language modeling.

The final training objective combines this ranking loss with the
traditional language modeling loss L𝐿𝑀 : L𝐽 𝑜𝑖𝑛𝑡 = L𝐿𝑀 + 𝜆L𝑅𝑎𝑛𝑘

where 𝜆 is a hyperparameter set to 10 in the original work. We will
refer to this as the “FIRST objective”.

4 Reproducing FIRST
First, we reproduced the results from Reddy et al. [19] using the
procedure detailed in their work.

4.1 Setup
Model and Training. We initialized from Zephyr𝛽 [24], a 7B LLM

instruction-tuned fromMistral-7B-Instruct-v0.1 [9] on chat datasets,



Accelerating Listwise Reranking: Reproducing and Enhancing FIRST SIGIR ’25, July 13–18, 2025, Padua, Italy

Dataset (1) FIRST-Reddy (2) FirstZephyr𝛽 (3) FirstRankZephyr (4) FirstMistral (5) FirstLLaMA

Climate-FEVER 0.2672 0.2314 0.2519 0.2417 0.2434
DBPedia-Entity 0.50925 0.49085 0.47615 0.50335 0.4387
FEVER 0.8164 0.8215 0.7927 0.84133 0.83013

FiQA 0.4223 0.45095 0.4263 0.47781,3,5 0.4162
HotpotQA 0.74245 0.76205 0.75065 0.77055 0.7017
MSMARCO 0.4425 0.4383 0.4275 0.4512 0.4316
NFCorpus 0.3725 0.3729 0.3555 0.38165 0.3481
NQ 0.66385 0.69283,5 0.6535 0.69853,5 0.6290
SCIDOCS 0.2047 0.2064 0.1874 0.2110 0.1848
SciFact 0.7459 0.7680 0.7495 0.7769 0.7489
TREC-COVID 0.79133,5 0.76835 0.75525 0.76665 0.6565

Average 0.5435 0.5458 0.5297 0.5564 0.5117

Table 1: Comparison of nDCG@10 across the datasets selected by Reddy et al. [19] from BEIR and MS MARCO, on models
trained on different backbones with the FIRST objective. Contriever was used as the first-stage retriever. Models are numbered
from (1) to (5). The superscripts indicate statistically significant improvements (paired Student’s 𝑡-test with 𝑝 ≤ 0.01 with
Bonferroni correction). e.g., 1 indicates that the entry is significantly higher than the entry in column 1 of that row.

and we fine-tuned using the joint objective L𝐽 𝑜𝑖𝑛𝑡 with 𝜆 = 10.
Training lasted for 3 epochs, using:

• Effective batch size: 32
• Learning rate: 5e-6
• Noisy embeddings [8]
• Sliding window size (𝑚): 20
• Step size (𝑠): 10

All model training was performed on 4 NVIDIA RTX A6000’s. The
trained checkpoint is referred to as FirstZephyr𝛽 .

Training Data. We utilized the same dataset as Reddy et al. [19]:
40K GPT-4 labeled rerank instances from Pradeep et al. [16]. Note
that to ensure single-token identification, Reddy et al. had con-
verted the original dataset to use alphabetical identifiers rather
than numerical identifiers.1

Retriever. Following the original paper, we employed Contriever
[11] as our first-stage retriever, selecting the top 100 documents for
LLM reranking.

Baseline Evaluation. We evaluated on the same data used in the
original FIRST study, which comprises of several subsets of BEIR
[23] and MS MARCO [1].

4.2 Results and Discussion
Table 1 compares the reranking quality across various models
trained with the FIRST objective, evaluated on the benchmark
datasets used in the original study.We compared two key implemen-
tations: FIRST-Reddy, the official checkpoint2 released by Reddy
et al. running on our machines, and FirstZephyr𝛽 , our reproduction
trained according to Reddy et al.’s procedures detailed above. Our
reproduced model achieved comparable average effectiveness to the
1The alphabetical version is available at:
https://huggingface.co/datasets/rryisthebest/rank_zephyr_training_data_alpha

2https://huggingface.co/rryisthebest/First_Model

original checkpoint, while demonstrating modest improvements
across most datasets. This validates both our implementation and
the reproducibility of the FIRST approach.

Despite these validations, our reproduction also revealed a sub-
tle but notable tokenization issue. Since FIRST reranks documents
based on the first generated token—a capitalized letter identifier
such as “A” or “B”—it assumes that these tokens remain stable during
inference. However, we observed that these identifiers occasionally
appear in slightly different forms, most commonly another token
of the same letter but preceded by a whitespace. Consequently,
the same document can be assigned multiple rankings within the
top logits, appearing both as “A” and “ A” (notice the whitespace),
effectively duplicating an identifier. This issue was not anecdo-
tal. When running FIRST-Reddy on the TREC-COVID dataset, 5
out of 50 queries contained duplicate identifiers in their top 20
ranked logits; recall that 20 is also the window size used. While we
addressed this problem through post-processing by filtering out
repeated identifiers, this phenomenon highlights a fundamental
limitation: alphabetical identifiers, despite being single tokens, may
not be the most reliable choice for reranking tasks.

5 Enhancing FIRST
5.1 Varying the Model Backbone
RQ1 How does FIRST generalize to different LLM backbones be-

yond the original Zephyr𝛽 implementation?
We fine-tuned various other prominent LLMs of comparable size,
besides Zephyr𝛽 , while keeping other settings constant:

• FirstMistral: fine-tuned from Mistral-7B-Instruct-v0.33
• FirstLLaMA: fine-tuned from LLaMA-3.1-8B-Instruct4
• FirstRankZephyr: fine-tuned from RankZephyr [16]

3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
4https://ai.meta.com/blog/meta-llama-3-1

https://huggingface.co/datasets/rryisthebest/rank_zephyr_training_data_alpha
https://huggingface.co/rryisthebest/First_Model
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://ai.meta.com/blog/meta-llama-3-1/


SIGIR ’25, July 13–18, 2025, Padua, Italy Zijian Chen, Ronak Pradeep, and Jimmy Lin

Figure 1: Comparison of training, language modeling, and ranking losses for FirstMistral and FirstLLaMA during training.

Note that FirstRankZephyrwas fine-tuned fromRankZephyr, which
in turn has been previously trained as a listwise reranker on L𝐿𝑀 .

As demonstrated in Table 1, FirstMistral achieved the highest
nDCG@10 scores on 8 out of 11 of the datasets selected by Reddy
et al. [19], with significant improvements over most other models
on FiQA (determined via paired Student’s t-test with 𝑝 ≤ 0.01, using
Bonferroni correction). This superior effectiveness can likely be
attributed to its initialization from a more recent version of Mistral
7B (v0.3), while FIRST-Reddy, FirstZephyr𝛽 , and FirstRankZephyr
were fine-tuned from Zephyr𝛽 , which in turn was fine-tuned from
an earlier Mistral 7B version (v0.1).

To better understand FirstLLaMA’s significantly lower effective-
ness on most datasets (in contrast to FirstMistral), we tracked and
compared its training process with FirstMistral, as illustrated in
Figure 1. The analysis monitored three metrics: the combined train-
ing loss (L𝐽 𝑜𝑖𝑛𝑡 ), its language modeling component (L𝐿𝑀 ), and its
ranking component (𝜆L𝑅𝑎𝑛𝑘 ). While FirstLLaMA exhibited faster
convergence in ranking loss, FirstMistral demonstrated more effi-
cient convergence in language modeling loss, which dominated the
overall training loss. This phenomenon could suggest that the joint
objective hyperparameters (e.g., the weighting factor 𝜆) and overall
loss design may interact in an architecture-specific manner, that
the FIRST settings chosen for Zephyr𝛽 (and the Mistral-7B family)
might not be optimal for LLaMA-3.1-8B-Instruct. Consequently,
although FIRST appears to generalize across the backbones selected
above, practitioners should be prepared to re-tune objective weights
and learning schedules when adapting to new backbones to fully
unlock each model’s potential.

In addition, effectiveness across the eleven BEIR datasets is far
from uniform: FirstMistral achieves its largest gains on FiQA, sig-
nificantly outperforming most other FIRST models, whereas on
TREC-COVID the margin narrows considerably. Therefore, when
deploying FIRST, it is essential to evaluate on benchmarks that
reflect the target setting’s characteristics (e.g., query complexity,
corpus size, topic domain), ensuring that the FIRST model used
aligns with application-specific requirements.

5.2 Evaluating on TREC Deep Learning
RQ2 How does FIRST generalize to other out-of-domain datasets?

We extended the evaluation beyond the datasets selected by Reddy
et al. to include five TREC Deep Learning Track test collections.
The TREC 2019 and 2020 Deep Learning Tracks (DL19, DL20) [2, 5]
draw from the MS MARCO v1 passage corpus, which contains
approximately 8.8 million passages. In contrast, the TREC 2021,
2022, and 2023 Deep Learning Tracks (DL21, DL22, DL23) [3, 4, 6]
are based on the substantially larger MSMARCO v2 passage corpus,
containing around 138 million passages.

Table 2 presents a comprehensive evaluation of model effective-
ness across TREC DL19–23. The results reinforced our previous
findings from Sections 4 and 5.1: FirstMistral maintained its supe-
rior scores across these new test collections, while FIRST-Reddy
and FirstZephyr𝛽 demonstrated comparable effectiveness, and First-
LLaMA continued to show relatively lower effectiveness.

Notably, with the exception of FirstLLaMA, models trained with
the FIRST objective achieved effectiveness comparable to
RankZephyrg , a model trained on L𝐿𝑀 , with FirstMistral even sur-
passing RankZephyrg ’s average effectiveness. Since TREC DL19–23
were not included in the original study, these results provide ad-
ditional validation for Reddy et al.’s central claim that the FIRST
approach, their attempt to efficient reranking, does not compromise
reranking effectiveness.

5.3 Evaluating Zero-Shot FIRST
RQ3 Towhat extent can LLMs trained solely on languagemodeling

perform FIRST-style reranking in a zero-shot setting?

A key insight from Reddy et al. was that RankZephyr, despite being
trained solely with a language modeling objective (L𝐿𝑀 ), exhibited
zero-shot ability to rank documents using the logits of the first
identifier only; its capability to rerank using the FIRST strategy
was notably stronger than in the pre-trained model, suggesting
that fine-tuning on L𝐿𝑀 implicitly improves single-token ranking.
To investigate this phenomenon further, we evaluated two open-
source listwise rerankers trained exclusively on L𝐿𝑀—RankZephyr
and RankVicuna [15, 16]—on the TREC Deep Learning Track test
collections (TREC DL19–23), using only the first-token logits at
inference time.

As evident in row RankZephyrl of Table 2, RankZephyr achieved
effectiveness on par with dedicated FIRST models when using only
first-token logits for reranking, even achieving significantly higher



Accelerating Listwise Reranking: Reproducing and Enhancing FIRST SIGIR ’25, July 13–18, 2025, Padua, Italy

Model DL19 DL20 DL21 DL22 DL23 Average

(1) FIRST-Reddy 0.7476 0.79865,8,9 0.77093,5,6,8,9 0.69445,8,9 0.56306,8,9 0.7149

(2) FirstZephyr𝛽 0.7576 0.7550 0.7439 0.67675,8,9 0.55333,6,8,9 0.6973

(3) FirstRankZephyr 0.7315 0.7363 0.7145 0.64428,9 0.5106 0.6674

(4) FirstMistral 0.7678 0.79015,8 0.76943,5,6,8,9 0.70302,3,5,8,9 0.57433,5,6,8,9 0.7209

(5) FirstLLaMA 0.7363 0.7263 0.6941 0.60428 0.49878 0.6519

(6) RankZephyrl 0.7369 0.73708 0.71035 0.6165 0.48748 0.6576
(7) RankZephyrg 0.77609 0.81405,8,9 0.76055,8,9 0.66699 0.56588 0.7166

(8) RankVicunal 0.7302 0.7103 0.6809 0.5794 0.4689 0.6339
(9) RankVicunag 0.6894 0.7081 0.6947 0.5521 0.4844 0.6257

Table 2: Comparison of nDCG@10 across TREC DL19–23 on models trained on the FIRST objective, as well as RankZephyr and
RankVicuna that were trained on L𝐿𝑀 . For RankZephyr, RankZephyrl denotes the model reranking using the logits of the first
identifier only, and RankZephyrg denotes the model reranking by generating the full permutation of document identifiers.
RankVicunal and RankVicunag are defined similarly for RankVicuna. Models are numbered from (1) to (9). The superscripts
indicate statistically significant improvements (paired Student’s 𝑡-test with 𝑝 ≤ 0.01 with Bonferroni correction). e.g., 1 indicates
that the entry is significantly higher than the entry in row 1 of that dataset.

effectiveness than FirstLLaMA on DL21, despite not being explicitly
trained for this objective. This observation validates Reddy et al.’s
hypothesis that training on L𝐿𝑀 implicitly improves the model’s
ability to perform single-token rerank. In fact, this is even more
pronounced in the case of RankVicuna, where RankVicunal outper-
formed RankVicunag ; that is, a model trained on L𝐿𝑀 was even
more effective on average when reranking using a single-token.

However, the relationship between L𝐿𝑀 and FIRST is slightly
more nuanced. We compared two models:

1. FirstRankZephyr: sequentially fine-tuned first onL𝐿𝑀 (start-
ing from Zephyr𝛽 to create RankZephyr) and then on the
FIRST objective

2. FirstZephyr𝛽 : fine-tuned directly from Zephyr𝛽 using the
FIRST objective

The results in Tables 1 and 2 show that FirstZephyr𝛽 consistently
outperformed FirstRankZephyr across most datasets, with signifi-
cant improvements on the NQ dataset. That is, while L𝐿𝑀 training
improves zero-shot FIRST effectiveness, it may actually hinder sub-
sequent fine-tuning with the FIRST objective. This result challenges
the intuitive assumption that language model pre-training neces-
sarily benefits downstream FIRST training.

5.4 Varying First-Stage Retrievers
RQ4 How does FIRST perform when paired with different first-

stage retrievers?
We conducted experiments with three first-stage retrievers, in com-
binationwith FirstMistral, our most effective FIRSTmodel, on TREC
DL19 and DL20. These retrievers represent diverse approaches to
information retrieval: a classical lexical method BM25 [20], a sparse
neural retriever SPLADE++ EnsembleDistil [7], and a dense neural
retriever RepLLaMA [12]. All three retrievers were also used as
baselines in the RankZephyr study [16].

Method DL19 DL20

BM25 0.5058 0.4796
BM25→ FirstMistral 0.7277 0.6971
Improvement +43.9% +45.4%

SPLADE++ EnsembleDistil 0.7308 0.7197
SPLADE++ EnsembleDistil→ FirstMistral 0.7678 0.7901
Improvement +5.1% +9.8%

RepLLaMA 0.7384 0.7195
RepLLaMA→ FirstMistral 0.7587 0.7682
Improvement +2.8% +6.8%

Table 3: Comparison of nDCG@10 for FirstMistral across
different first-stage retrievers, evaluated on DL19 and DL20.

The results in Table 3 revealed two key patterns. First, stronger
initial retrieval consistently results in improved post-reranking
effectiveness with FirstMistral. Second, we observed patterns of
diminishing returns from better first-stage retrievers, as reflected
in the decreasing percentage improvements. That is, while starting
with better retrieval improved post-reranking effectiveness, the
marginal improvement contributed by FIRST tapers off once the
initial retrieval is already strong.

These findings align with patterns reported in RankZephyr [16],
suggesting that the relationship between first-stage retriever quality
and final ranking effectiveness remains consistent, regardless of
whether the reranker employs traditional listwise reranking with
full generation or FIRST’s single-token approach.



SIGIR ’25, July 13–18, 2025, Padua, Italy Zijian Chen, Ronak Pradeep, and Jimmy Lin

Dataset FirstMistral RankMistral

Climate-FEVER 0.2417 0.2411
DBPedia-Entity 0.5033 0.5088
FEVER 0.8413 0.8223
FiQA 0.4778 0.4537
HotpotQA 0.7705 0.7349
MSMARCO 0.4512 0.4351
NFCorpus 0.3816 0.3828
NQ 0.6985 0.6835
SCIDOCS 0.2110 0.2108
SciFact 0.7769 0.7743
TREC-COVID 0.7666 0.7840

DL19 0.7678 0.7772
DL20 0.7901 0.7949
DL21 0.7694 0.7603
DL22 0.7030 0.6980
DL23 0.5743 0.5537

Average 0.6078 0.6010

Table 4: Comparison of nDCG@10 for FirstMistral and
RankMistral across the datasets selected by Reddy et al., as
well as TREC DL19–23. We did not observe any 𝑝 ≤ 0.01 with
paired Student’s 𝑡-test on the datasets.

5.5 Comparing Effectiveness–Efficiency
Tradeoffs

RQ5 What are the concrete effectiveness–efficiency tradeoffs be-
tween FIRST and traditional full-generation?

Effectiveness. To rigorously assess the effectiveness of the FIRST
objective against the traditional language modeling objective L𝐿𝑀 ,
we conducted experiments on two sets of pre-trained models. In
each set, we compared models initialized from the same base check-
point but fine-tuned with different objectives. For our first compar-
ison, we evaluated FirstZephyr𝛽 and RankZephyr, both initialized
from Zephyr𝛽 but fine-tuned on the FIRST objective and L𝐿𝑀

respectively. Results in Table 2 show that both models achieved
comparable effectiveness, with RankZephyr (RankZephyrg) demon-
strating a slight advantage on average. To validate these findings, we
conducted a second comparison between FirstMistral and RankMis-
tral, both initialized from Mistral-7B-Instruct-v0.3 but again fine-
tuned on FIRST and L𝐿𝑀 respectively. As shown in Table 4, both
models demonstrated consistent effectiveness across all datasets.
These results provide robust evidence that, despite using only the
first token, the FIRST objective maintains its ranking effectiveness.

Efficiency. To quantify the computational efficiency gains of
FIRST’s single-token approach versus full-sequence generation,
we measured inference latency using NVIDIA Nsight Systems,5 as
well as the input and output token counts across the TREC DL19–23
datasets. All experiments were conducted on a single NVIDIA RTX
5https://developer.nvidia.com/nsight-systems

RankZephyr RankMistral
(𝑔) (𝑙) (𝑔) (𝑙)

DL19 (43 queries)

# In 18247.5 18293.8 18323.3 18419.2
# Out 711 18 711 18
Latency 3.13 s 1.92 s 3.13 s 1.89 s
Speedup - 38.7% - 39.6%

DL20 (54 queries)

# In 18119.9 18182.6 18109.0 18189.4
# Out 711 18 711 18
Latency 3.10 s 1.83 s 3.06 s 1.79 s
Speedup - 41.0% - 41.5%

DL21 (53 queries)

# In 15681.9 15708.4 15482.7 15552.4
# Out 711 18 711 18
Latency 2.59 s 1.55 s 2.48 s 1.51 s
Speedup - 40.2% - 39.1%

DL22 (76 queries)

# In 15812.1 15834.9 15674.3 15741.1
# Out 711 18 711 18
Latency 2.76 s 1.67 s 2.64 s 1.58 s
Speedup - 39.5% - 40.2%

DL23 (82 queries)

# In 15753.1 15791.5 15666.3 15736.7
# Out 711 18 711 18
Latency 2.58 s 1.59 s 2.52 s 1.57 s
Speedup - 38.3% - 37.7%

Table 5: Comparison of average input token counts (# In),
average output tokens (# Out), and average reranking latency
per query on DL19–23. Under RankZephyr, (𝑔) denotes the
model reranking by generating the full permutation of doc-
ument identifiers, and (𝑙) denotes reranking using the logits
of the first identifier only. Similar notations are used for
RankMistral. Speedup shows the percentage decrease in la-
tency from (𝑔) to (𝑙) in the corresponding model.

4090 to reduce confounding factors stemming from orchestration
across multiple GPUs.

Table 5 compares the average number of input tokens, output
tokens per query, and the average inference latency per query
between full-sequence generation and FIRST’s single-token ap-
proach across two models, RankZephyr and RankMistral. The re-
sults demonstrated substantial computational savings, with FIRST
reducing inference time by 40% per query across the five datasets.

These efficiency gains, consistent across different model archi-
tectures, confirm that FIRST is a competitive listwise reranking

https://developer.nvidia.com/nsight-systems


Accelerating Listwise Reranking: Reproducing and Enhancing FIRST SIGIR ’25, July 13–18, 2025, Padua, Italy

approach, offering faster inference while maintaining the effective-
ness demonstrated in previous experiments. Such latency benefits
are particularly critical as these models are increasingly deployed in
real-world serving settings, where response time directly impacts
user experience and infrastructure costs [17].

5.6 Varying Window and Step Sizes
RQ6 What are the effectiveness–efficiency tradeoffs between dif-

ferent window and step sizes when using FIRST?
A keen reader may have noticed that in Table 5, the average number
of output tokens is consistently 711 for full-sequence generation
and 18 for FIRST. Indeed, this stems from the fixed window size
of 20 and step size of 10. FIRST rerankers are trained to output 2
tokens per rerank: one for the alphabetical identifier and one for
the closing identifier. Given that we rerank the top 100 retrieved
documents using a window size of 20 and step size of 10, precisely
9 rerank LLM calls are performed per query, yielding 2 × 9 = 18
output tokens. A similar calculation can be done for full-sequence
generation rerankers.

That is, varying the window and step sizes will directly impact
the efficiency per query, and intuitively also the effectiveness. To
further understand the effectiveness–efficiency tradeoffs FIRST
has to offer, we conducted an ablation study across different pa-
rameterizations of (window size/step size) on FIRST. Following
RankZephyr [16], we compared parameterizations of (20/10), (10/5),
(2/1), and our results align with those from RankZephyr: (20/10)
yields higher effectiveness than (10/5) and (2/1), as presented in
Table 6, with significant improvements over (2/1) on most datasets.
In fact, (20/10) is also more efficient as the bigger window size
requires fewer rerank LLM calls.

However, this outcome is somewhat expected, courtesy of the
nDCG@10 metric rewarding models that effectively rank the top
10 documents: among the 3 parameterizations, only (20/10) has a
large enough window size to promote 10 documents from the last
10 candidates to the top 10 candidates. Thus, to further investigate
the effect of parameterization in fairness of nDCG@10, we intro-
duced two additional parameterizations: (20/5) and (20/2), both
having a long window size while varying step sizes. As shown
in Table 6, (20/10), (20/5), (20/2) achieve comparable effectiveness,
with (20/5) demonstrating modest advantage on average. However,
(20/5) increases latency per query by approximately 85% compared
to (20/10), while (20/2) incurs more than 4 times the latency. Given
this steep efficiency cost, we regard (20/10), the original parameteri-
zation in RankZephyr and FIRST, as the parameterization of choice,
balancing efficiency and effectiveness.

6 Conclusion
Through a comprehensive study guided by six research questions,
we expanded understanding of the capabilities of FIRST across
multiple dimensions, validating its promise as a more efficient yet
effective alternative to traditional LLM reranking.

More specifically, we demonstrated that FIRST successfully gen-
eralizes beyond its original Zephyr𝛽 implementation to other LLM
backbones (RQ1), with robust effectiveness across diverse topics
in out-of-domain TREC Deep Learning datasets (RQ2). This strong
generalization validated the practical utility of FIRST across diverse

w/s # In # Out Latency nDCG@10 # Calls

DL19 (43 queries)

a: (2/1) 33878.4 198 3.50 s 0.7309 99
b: (10/5) 21205.2 38 2.10 s 0.7412 19
c: (20/10) 18419.2 18 1.89 s 0.7678 9
d: (20/5) 34928.6 34 3.46 s 0.7727 17
e: (20/2) 84834.9 82 8.35 s 0.7749 41

DL20 (54 queries)

a: (2/1) 33794.8 198 3.38 s 0.7193 99
b: (10/5) 20773.4 38 2.07 s 0.7589𝑎 19
c: (20/10) 18189.4 18 1.79 s 0.7901𝑎 9
d: (20/5) 34351.5 34 3.38 s 0.7914𝑎,𝑏 17
e: (20/2) 82861.2 82 8.06 s 0.7865𝑎 41

DL21 (53 queries)

a: (2/1) 31701.0 198 3.18 s 0.6847 99
b: (10/5) 18073.7 38 1.80 s 0.7589𝑎 19
c: (20/10) 15552.4 18 1.51 s 0.7694𝑎 9
d: (20/5) 29425.5 34 2.91 s 0.7746𝑎 17
e: (20/2) 70905.1 82 6.89 s 0.7656𝑎 41

DL22 (76 queries)

a: (2/1) 31372.1 198 3.15 s 0.5718 99
b: (10/5) 18161.0 38 1.81 s 0.6985𝑎 19
c: (20/10) 15741.1 18 1.58 s 0.7030𝑎 9
d: (20/5) 29741.2 34 2.93 s 0.6996𝑎 17
e: (20/2) 71805.9 82 7.07 s 0.7029𝑎 41

DL23 (82 queries)

a: (2/1) 31403.5 198 3.16 s 0.4728 99
b: (10/5) 18186.0 38 1.86 s 0.5705𝑎 19
c: (20/10) 15736.7 18 1.57 s 0.5743𝑎 9
d: (20/5) 29714.3 34 3.04 s 0.5809𝑎 17
e: (20/2) 71777.1 82 7.17 s 0.5811𝑎 41

Table 6: Comparison of (window size/step size) for RankMis-
tral at (2/1), (10/5), (20/10), (20/5), and (20/2) on the DL19–23
datasets. # In, # Out, Latency, # Calls are the average num-
ber of input tokens, output tokens, latency, and number of
rerank LLM calls per query on top 100 retrieved documents,
respectively. Different (window size/step size) parameteriza-
tions are numbered from “a” to “e”. The superscripts in the
nDCG@10 column indicate statistically significant improve-
ments (paired Student’s 𝑡-test with 𝑝 ≤ 0.01 with Bonferroni
correction). e.g., 𝑎 indicates that the entry is significantly
higher than the entry in row “a” of that dataset.

retrieval scenarios and suggested that its single-token approach
captures generalizable relevance signals.

Further, we showed that while LM training does improve zero-
shot single-token reranking capabilities (RQ3), it may paradoxically



SIGIR ’25, July 13–18, 2025, Padua, Italy Zijian Chen, Ronak Pradeep, and Jimmy Lin

hinder subsequent FIRST fine-tuning, raising questions about the
relationship between language modeling and ranking objectives.

Regarding first-stage retrievers (RQ4), we observed that FIRST
exhibited patterns of diminishing returns with stronger retrievers,
mirroring results from traditional LLM rerankers. This suggests that
despite changes in both inferencemethod and training objective, the
fundamental dynamics of multi-stage retrieval remain consistent.

Finally, our latency analysis—both in comparisonwith traditional
full-sequence generation (RQ5) and across different parameteri-
zations for FIRST (RQ6)—provided a clear quantification of the
concrete efficiency–effectiveness tradeoffs. We showed that FIRST
reduces inference time by 40% compared to full-sequence genera-
tion while maintaining comparable effectiveness, and validated the
optimal choice of window and step sizes in the original work.

To conclude, our findings demonstrated the reproducibility, ro-
bustness, and effectiveness of FIRST, suggesting that full-sequence
generation may be unnecessarily verbose for ranking tasks. How-
ever, challenges remain, particularly the tokenization inconsisten-
cies with alphabetical identifiers and the underlying tension be-
tween language modeling and ranking objectives, as evidenced
by the relatively poor effectiveness of FirstRankZephyr and First-
LLaMA. These issues point to promising research directions: future
work should explore ways to better integrate ranking objectives
more explicitly into language model training, refine tokenization
strategies to ensure stable document identifiers, and further inves-
tigate the interplay between learning-to-rank losses and language
modeling to improve the effectiveness of single-token reranking.

Acknowledgments
This research was supported in part by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada. Additional funding
is provided by Microsoft via the Accelerating Foundation Models
Research program.

References
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
arXiv:1611.09268 [cs.CL]

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 Deep Learning Track. In Proceedings of the Twenty-Ninth Text
REtrieval Conference Proceedings (TREC 2020).

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin.
2021. Overview of the TREC 2021 Deep Learning Track. In Proceedings of the
Thirtieth Text REtrieval Conference (TREC 2021).

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Jimmy Lin, Ellen M.
Voorhees, and Ian Soboroff. 2022. Overview of the TREC 2022 Deep Learning
Track. In Proceedings of the Thirty-First Text REtrieval Conference (TREC 2022).

[5] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2019. Overview of the TREC 2019 Deep Learning Track. In Proceedings
of the Twenty-Eighth Text REtrieval Conference Proceedings (TREC 2019).

[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Hossein A. Rahmani, Daniel Cam-
pos, Jimmy Lin, Ellen M. Voorhees, and Ian Soboroff. 2023. Overview of the
TREC 2023 Deep Learning Track. In Proceedings of the Thirty-Second Text REtrieval
Conference (TREC 2023).

[7] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural
IR Models More Effective. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Madrid, Spain)
(SIGIR ’22). Association for ComputingMachinery, NewYork, NY, USA, 2353–2359.
doi:10.1145/3477495.3531857

[8] Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min
Chu, Gowthami Somepalli, Brian R. Bartoldson, Bhavya Kailkhura, Avi

Schwarzschild, Aniruddha Saha, Micah Goldblum, Jonas Geiping, and Tom
Goldstein. 2023. NEFTune: Noisy Embeddings Improve Instruction Finetuning.
arXiv:2310.05914 [cs.CL]

[9] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

[10] Carlos Lassance, Ronak Pradeep, and Jimmy Lin. 2024. Naverloo @ TREC Deep
Learning and NeuCLIR 2023: As Easy as Zero, One, Two, Three — Cascading
Dual Encoders, Mono, Duo, and Listo for Ad-Hoc Retrieval. In Proceedings of the
Thirty-Second Text REtrieval Conference (TREC 2023). NIST.

[11] Yibin Lei, Liang Ding, Yu Cao, Changtong Zan, Andrew Yates, and Dacheng
Tao. 2023. Unsupervised Dense Retrieval with Relevance-Aware Contrastive
Pre-Training. In Findings of the Association for Computational Linguistics: ACL
2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association
for Computational Linguistics, Toronto, Canada, 10932–10940. doi:10.18653/v1/
2023.findings-acl.695

[12] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2024. Fine-
Tuning LLaMA for Multi-Stage Text Retrieval. In Proceedings of the 47th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(Washington DC, USA) (SIGIR ’24). Association for Computing Machinery, New
York, NY, USA, 2421–2425. doi:10.1145/3626772.3657951

[13] XueguangMa, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-Shot List-
wise Document Rerankingwith a Large LanguageModel. arXiv:2305.02156 [cs.IR]

[14] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage
Document Ranking with BERT. arXiv:1910.14424 [cs.IR]

[15] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna:
Zero-Shot Listwise Document Reranking with Open-Source Large Language
Models. arXiv:2309.15088 [cs.IR]

[16] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023.
RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a
Breeze! arXiv:2312.02724 [cs.IR]

[17] Ronak Pradeep, Nandan Thakur, Sahel Sharifymoghaddam, Eric Zhang, Ryan
Nguyen, Daniel Campos, Nick Craswell, and Jimmy Lin. 2025. Ragnarök: A
Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented
Generation Track. In Proceedings of the 47th European Conference on Information
Retrieval (ECIR 2025), Part I. Lucca, Italy, 132–148.

[18] Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming
Shen, Tianqi Liu, Jialu Liu, Donald Metzler, Xuanhui Wang, and Michael Ben-
dersky. 2024. Large Language Models are Effective Text Rankers with Pairwise
Ranking Prompting. arXiv:2306.17563 [cs.IR]

[19] Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md Arafat Sultan, Deevya Swain,
Avirup Sil, and Heng Ji. 2024. FIRST: Faster Improved Listwise Reranking with
Single Token Decoding. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (Eds.). Association for Computational Linguistics, Miami, Florida, USA,
8642–8652. doi:10.18653/v1/2024.emnlp-main.491

[20] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Foundations and Trends in Information Retrieval 3, 4
(2009), 333–389.

[21] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. arXiv:2304.09542 [cs.CL]

[22] Manveer Singh Tamber, Ronak Pradeep, and Jimmy Lin. 2023. Scaling Down, LiT-
ting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder
Models. arXiv:2312.16098 [cs.IR]

[23] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. arXiv:2104.08663 [cs.IR]

[24] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Ra-
sul, Younes Belkada, Shengyi Huang, Leandro von Werra, Clémentine Four-
rier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M. Rush,
and Thomas Wolf. 2023. Zephyr: Direct Distillation of LM Alignment.
arXiv:2310.16944 [cs.LG]

[25] Xinyu Zhang, Sebastian Hofstätter, Patrick Lewis, Raphael Tang, and Jimmy
Lin. 2023. Rank-without-GPT: Building GPT-Independent Listwise Rerankers on
Open-Source Large Language Models. arXiv:2312.02969 [cs.CL]

[26] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong
Deng, Haonan Chen, Zheng Liu, Zhicheng Dou, and Ji-Rong Wen. 2024. Large
Language Models for Information Retrieval: A Survey. arXiv:2308.07107 [cs.CL]

[27] Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and
Michael Bendersky. 2024. Beyond Yes and No: Improving Zero-Shot LLM Rankers
via Scoring Fine-Grained Relevance Labels. arXiv:2310.14122 [cs.IR]

[28] Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. 2024.
A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with
Large Language Models. arXiv:2310.09497 [cs.IR]

https://arxiv.org/abs/1611.09268
https://doi.org/10.1145/3477495.3531857
https://arxiv.org/abs/2310.05914
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.findings-acl.695
https://doi.org/10.18653/v1/2023.findings-acl.695
https://doi.org/10.1145/3626772.3657951
https://arxiv.org/abs/2305.02156
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2312.02724
https://arxiv.org/abs/2306.17563
https://doi.org/10.18653/v1/2024.emnlp-main.491
https://arxiv.org/abs/2304.09542
https://arxiv.org/abs/2312.16098
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2310.16944
https://arxiv.org/abs/2312.02969
https://arxiv.org/abs/2308.07107
https://arxiv.org/abs/2310.14122
https://arxiv.org/abs/2310.09497

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methods
	4 Reproducing FIRST
	4.1 Setup
	4.2 Results and Discussion

	5 Enhancing FIRST
	5.1 Varying the Model Backbone
	5.2 Evaluating on TREC Deep Learning
	5.3 Evaluating Zero-Shot FIRST
	5.4 Varying First-Stage Retrievers
	5.5 Comparing Effectiveness–Efficiency Tradeoffs
	5.6 Varying Window and Step Sizes

	6 Conclusion
	Acknowledgments
	References

